The Kodaira Dimension of the Moduli Space of Prym Varieties

نویسنده

  • GAVRIL FARKAS
چکیده

Prym varieties provide a correspondence between the moduli spaces of curves and abelian varieties Mg and Ag−1, via the Prym map Pg : Rg → Ag−1 from the moduli space Rg parameterizing pairs [C, η], where [C] ∈ Mg is a smooth curve and η ∈ Pic(C)[2] is a torsion point of order 2. When g ≤ 6 the Prym map is dominant and Rg can be used directly to determine the birational type ofAg−1. It is known that Rg is rational for g = 2, 3, 4 (see [Dol] and references therein and [Ca] for the case of genus 4) and unirational for g = 5 (cf. [IGS] and [V2]). The situation in genus 6 is strikingly beautiful because P6 : R6 → A5 is equidimensional (precisely dim(R6) = dim(A5) = 15). Donagi and Smith showed that P6 is generically finite of degree 27 (cf. [DS]) and the monodromy group equals the Weyl group WE6 describing the incidence correspondence of the 27 lines on a cubic surface (cf. [D1]). There are three different proofs that R6 is unirational (cf. [D1], [MM], [V]). Verra has very recently announced a proof of the unirationality ofR7 (see also Theorem 0.8 for a weaker result). The Prymmap Pg is generically injective for g ≥ 7 (cf. [FS]), although never injective. In this range, we may regard Rg as a partial desingularization of the moduli space Pg(Rg) ⊂ Ag−1 of Prym varieties of dimension g − 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prym varieties and their moduli

This survey discusses the geometry of the moduli space of Prym varieties. Several applications of Pryms in algebraic geometry are presented. The paper begins with with a historical discussion of the life and achievements of Friedrich Prym. Topics treated in subsequent sections include singularities and Kodaira dimension of the moduli space, syzygies of Prym-canonical embedding and the geometry ...

متن کامل

Prym Varieties of Cyclic Coverings

The Prym map of type (g, n, r) associates to every cyclic covering of degree n of a curve of genus g, ramified at a reduced divisor of degree r, the corresponding Prym variety. We show that the corresponding map of moduli spaces is generically finite in most cases. From this we deduce the dimension of the image of the Prym map.

متن کامل

Compactification of the Prym Map for Non Cyclic Triple Coverings

According to [LO], the Prym variety of any non-cyclic étale triple cover f : Y → X of a smooth curve X of genus 2 is a Jacobian variety of dimension 2. This gives a map from the moduli space of such covers to the moduli space of Jacobian varieties of dimension 2. We extend this map to a proper map Pr of a moduli space S3M̃2 of admissible S3-covers of genus 7 to the moduli space A2 of principally...

متن کامل

The Uniformization of the Moduli Space of Principally Polarized Abelian 6-folds

Introduction 1 1. Kanev’s construction and Prym-Tyurin varieties of E6-type 7 2. The E6 lattice 11 3. Degenerations of Jacobians and Prym varieties 13 4. Degenerations of Prym-Tyurin-Kanev varieties 15 5. The global geometry of the Hurwitz space of E6-covers 20 6. The Prym-Tyurin map along boundary components of Hur 30 7. Ordinary Prym varieties regarded as Prym-Tyurin-Kanev varieties 39 8. The...

متن کامل

Kodaira Dimension of Moduli of Special Cubic Fourfolds

A special cubic fourfold is a smooth hypersurface of degree three and dimension four that contains a surface not homologous to a complete intersection. Special cubic fourfolds give rise to a countable family of Noether-Lefschetz divisors Cd in the moduli space C of smooth cubic fourfolds. These divisors are irreducible 19-dimensional varieties birational to certain orthogonal modular varieties....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009